Quiz 6 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces. A linear transformation $T: V \to W$ is ...

Solution: A function $T: V \to W$ is a *linear transformation* if for all $\mathbf{u}, \mathbf{v} \in V$ and all scalars a, b in the underlying field,

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v}).$$

Equivalently, T satisfies (i) additivity $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and (ii) homogeneity $T(a\mathbf{u}) = a T(\mathbf{u})$.

(b) A vector is ...

Solution: An element of a vector space. Concretely, if V is a vector space over a field \mathbb{F} , then any $v \in V$ is called a *vector*. (In the specific case $V = \mathbb{R}^n$, a vector is an ordered n-tuple $[x_1, \ldots, x_n]^T$ with the usual componentwise addition and scalar multiplication.)

2. Suppose $n \in \mathbb{Z}_{>0}$. Show

VS-1: For all
$$\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$$
, $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Solution: Write $\vec{u} = (u_1, \dots, u_n)$, $\vec{v} = (v_1, \dots, v_n)$, $\vec{w} = (w_1, \dots, w_n)$. Then

$$(\vec{u} + \vec{v}) + \vec{w} = [u_1 + v_1, \dots, u_n + v_n]^T + [w_1, \dots, w_n]^T = [(u_1 + v_1) + w_1, \dots, (u_n + v_n) + w_n]^T.$$

Similarly,

$$\vec{u} + (\vec{v} + \vec{w}) = [u_1, \dots, u_n]^T + [v_1 + w_1, \dots, v_n + w_n]^T = [u_1 + (v_1 + w_1), \dots, u_n + (v_n + w_n)]^T$$

Since real-number addition is associative, $(u_i + v_i) + w_i = u_i + (v_i + w_i)$ for each i. Hence the two n-tuples are equal componentwise, proving $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) The map $F: \mathcal{P}_2 \to \mathcal{P}_3$ defined by $p(x) \mapsto x + p(x)$ is a linear transformation.

Solution: FALSE. A linear map must send 0 to 0, but $F(0) = x \neq 0$. Equivalently, for scalars a, b and $p, q \in \mathcal{P}_2$,

$$F(ap + bq) = x + ap(x) + bq(x)$$

while

$$aF(p) + bF(q) = a(x + p(x)) + b(x + q(x)) = (a + b)x + ap(x) + bq(x),$$

which are not equal in general (e.g. take a = b = 1).

(b) The map $G: \mathcal{P}_2 \to \mathcal{P}_3$ defined by $q(x) \mapsto x \, q(x)$ is a linear transformation.

Solution: True. For all $a, b \in \mathbb{R}$ and $p, q \in \mathcal{P}_2$,

$$G(ap + bq) = x(ap(x) + bq(x)) = a xp(x) + b xq(x) = a G(p) + b G(q).$$

Thus G is linear.